返回

超级系统

首页
关灯
护眼
字体:
资料 神经系统概论
书架管理 返回目录

突触,轴突末端(突触前膜)和另一神经元的表膜(突触后膜)之间以突触间隙相隔。腔肠动物神经网的突触主要是电突触。蚯蚓、虾、软体动物等无脊椎动物主要也是电突触。

    电突触的特点是:(1)突触前后两膜很接近,神经冲动可以直接通过,速度快;(2)传导没有方向之分,形成电突触的2个神经元的任何一个发生冲动,即可以通过电突触而传给另一个神经元。

    脊椎动物也有电突触,但更多的是化学突触。化学突触的形态特点是2个神经元之间有一个宽约为20nm~30nm的缝隙。缝隙的前后分别为突触前膜和突触后膜,缝隙的存在使神经冲动不能直接通过,只有在某种化学物质,即神经递质的参与下,在神经递质与突触后膜上的受体结合后,突触后神经才能去极化而发生兴奋。

    在突触前膜内有很多小泡(上千个),称为突触囊泡(synapticvesicles),其内含物质就是神经递质。

    化学突触实现神经传导的过程:当神经冲动从轴突传导到末端时,突触前膜透性发生变化,使Ca2+从膜上的Ca2+通道大量进入突触前膜。此时,含递质的突触囊泡可能是由于Ca2+的作用而移向突触前膜,突触囊泡的膜与突触前膜融合而将递质排出至突触间隙。突触后膜表面上有递质的受体,递质和受体结合而使介质中的Na+大量涌入细胞,于是静息电位变为动作电位,神经冲动发生,并沿着这一神经元的轴突传导出去。这就是通过神经递质的作用,使神经冲动通过突触而传导到另一神经元的机制。

    兴奋性突触和抑制性突触

    神经冲动有兴奋性的,也有抑制性的。抑制是神经冲动在到达突触时受到阻碍,不能通过或是很难通过所致。神经冲动能否通过化学突触决定于这一突触释放的递质的性质和突触后膜的性质。如果释放的递质能使突触后膜去极化,一定量的递质就可使突触后神经元去极化而兴奋,实现神经冲动的传导。反之,如果释放的递质不但不引起突触后膜的去极化,反而加强膜的极化,也就是说,不但阻止Na+的渗入,而且促使K+的大量渗出,或Cl的大量渗入,结果膜的电位差加大,接受刺激的阈限也就增高,只有更强的刺激才能引起兴奋。这种释放抑制性递质的突触就是抑制性突触。

    (6)反射弧

    反射是指对某一刺激无意识的应答。膝跳反射(图1528)是一种最为简单的反射类型,它仅包含两个神经元,感觉神经元(输入)和运动神经元(输出)。刺激膝盖处大腿肌肉的感受器,在感觉神经元中引发了动作电位,动作电位上行到脊髓,脊髓中感觉神经元直接与运动神经元建立突触联系。如果信号足够强,就可以在运动神经元中引发动作电,当这个动作电位穿递到大腿肌肉,即可引起膝跳反射。然而大多数反射要比膝跳反射复杂的多,在脊髓中包括有一个或多个中间神经元,将感觉神经元和运动神经元连接起来。因此反射的概念是,在中枢神经系统参与下,机体对刺激感受器所发生的规律性反应。反射活动是在一定的神经结构里进行,此结构就是反射弧,一个典型的反射弧是由感受器(接受刺激的器官或细胞)、感觉神经元、中间神经元、运动神经元、效应器(发生反应的器官或细胞)五个部分组成。反射弧是神经系统的基本工作单位。

    3、神经冲动及其传导

    (1)动作电位

    神经冲动的传导过程是电化学的过程,是在神经纤维上顺序发生的电化学变化。神经收到刺激时,细胞膜的离子透性发生急剧变化。用同位素标记的实验证明,神经纤维在受到刺激(如电刺激)时,Na+的流入量比未受刺激时增加20倍,同时K+流出量也增加9倍,所以神经冲动是伴随着Na+大量流入和K+大量流出而发生的。

    细胞的膜电位是由细胞膜对特异离子的相对通透性和离子的跨膜浓度梯度决定的。在细胞膜上存在着由亲水的蛋白质分子构成的物质出入细胞的通道。对神经传导来说,最重要的离子通道是Na+、K+、Cl+、Ca2+等通道。神经纤维静息时,也就是说,在神经纤维处于极化状态时(电位差为70mV),Na+通道大多关闭。膜内外的Na+梯度是靠Na+、K+泵维持的。静息电位(restingpotential,RP),细胞处于静息状态是的膜内外电位差,可以根据Nernst方程和膜内外的离子浓度计算得到。

    神经纤维受到刺激时,膜上接受刺激的地点失去极性,透性发生变化,一些Na+通道张开,膜外大量的Na+顺浓度梯度从Na+通道流入膜内。这就进一步使膜失去极性,使更多的Na+通道张开,结果更多的Na+流入。这是一个正反馈的倍增过程,这一过程使膜内外的Na+达到平衡,膜的电位从静息时的70mV转变到0,并继续转变到+35mV(动作电位)。也就是说,原来是负电性的膜内暂时地转变为正电性,原来是正电性的膜外反而变成负电性的了。此时膜内阳离子多了,Na+通道逐渐关闭起来。由于此时膜的极性并未恢复到原

上一页 目录 下一页