的结构;后者从功能和结构上看都肯定是轴突。
(2)神经胶质细胞
中枢神经系统中除神经元外,还有一类细胞,即神经胶质细胞(neuroglia),或简称胶质细胞。胶质细胞比神经元多,在哺乳类,两者的比例约为10:1。胶质细胞没有传导功能,但对神经元的代谢和正常活动都起着重要作用。一种胶质细胞称为少突胶质细胞(oligodendroglia),这部分细胞分支较少,作用和周围神经系统中的施旺细胞一样,即围裹在神经纤维(和细胞体)之外,形成多层绝缘的髓鞘。另一种胶质细胞称星状胶质细(astroglia)胞,这种细胞数目最多,功能也是多方面的。它的一个重要功能是参与神经递质的代谢。此外,星状胶质细胞对中枢神经系统中离子平衡即神经系统的正常发育都有重要作用。有人认为,神经胶质细胞对脑的记忆功能有帮助。胶质细胞退化或不正常时可出现神经功能上的疾患。
(3)神经和神经节
解剖蚯蚓或蛙所见的银白色神经乃是由多个神经元伸出的神经纤维(轴突或树突)所组成的。这些神经纤维由结缔组织裹在一起,外面再围以结缔组织的鞘,即形成一条神经。这些神经纤维各有髓鞘包围,外面又有结缔组织彼此相隔,是高度绝缘的,传导信息时彼此不受干扰。脊椎动物的脑和脊髓中的神经纤维也并行而成神经束,但埋藏在脑和脊髓中,不成分离的神经,其功能是传导,称为神经“通道”(pathways)。
神经元的细胞体多集中于中枢神经系统的灰质中。在无脊椎动物,细胞体集中而成神经节,如蚯蚓的脑神经节、食管下神经节等。脊椎动物也有一些神经节,如人的脊神经节、交感神经节等。
(4)突触
轴突的末端分为许多小支,各小支的末端膨大成小球。小球和另一神经元的树突或细胞体的表膜相连处即是突触(synapse)。在无脊椎动物,轴突大多和其它神经元的树突形成突触。在脊椎动物,轴突可和树突相连,但更多的则是与细胞体的表膜形成突触。
电突触和化学突触
据神经冲动通过突触的方式的不同,突触可分为电突触和化学突触2种类型。在电突触,轴突末端(突触前膜)和另一神经元的表膜(突触后膜)之间以突触间隙相隔。腔肠动物神经网的突触主要是电突触。蚯蚓、虾、软体动物等无脊椎动物主要也是电突触。
电突触的特点是:(1)突触前后两膜很接近,神经冲动可以直接通过,速度快;(2)传导没有方向之分,形成电突触的2个神经元的任何一个发生冲动,即可以通过电突触而传给另一个神经元。
脊椎动物也有电突触,但更多的是化学突触。化学突触的形态特点是2个神经元之间有一个宽约为20nm~30nm的缝隙。缝隙的前后分别为突触前膜和突触后膜,缝隙的存在使神经冲动不能直接通过,只有在某种化学物质,即神经递质的参与下,在神经递质与突触后膜上的受体结合后,突触后神经才能去极化而发生兴奋。
在突触前膜内有很多小泡(上千个),称为突触囊泡(synapticvesicles),其内含物质就是神经递质。
化学突触实现神经传导的过程:当神经冲动从轴突传导到末端时,突触前膜透性发生变化,使Ca2+从膜上的Ca2+通道大量进入突触前膜。此时,含递质的突触囊泡可能是由于Ca2+的作用而移向突触前膜,突触囊泡的膜与突触前膜融合而将递质排出至突触间隙。突触后膜表面上有递质的受体,递质和受体结合而使介质中的Na+大量涌入细胞,于是静息电位变为动作电位,神经冲动发生,并沿着这一神经元的轴突传导出去。这就是通过神经递质的作用,使神经冲动通过突触而传导到另一神经元的机制。
兴奋性突触和抑制性突触
神经冲动有兴奋性的,也有抑制性的。抑制是神经冲动在到达突触时受到阻碍,不能通过或是很难通过所致。神经冲动能否通过化学突触决定于这一突触释放的递质的性质和突触后膜的性质。如果释放的递质能使突触后膜去极化,一定量的递质就可使突触后神经元去极化而兴奋,实现神经冲动的传导。反之,如果释放的递质不但不引起突触后膜的去极化,反而加强膜的极化,也就是说,不但阻止Na+的渗入,而且促使K+的大量渗出,或Cl的大量渗入,结果膜的电位差加大,接受刺激的阈限也就增高,只有更强的刺激才能引起兴奋。这种释放抑制性递质的突触就是抑制性突触。
(5)神经递质
轴突的末端分为许多小支,各小支的末端膨大成小球。小球和另一神经元的树突或细胞体的表膜相连处即是突触(synapse)。在无脊椎动物,轴突大多和其它神经元的树突形成突触。在脊椎动物,轴突可和树突相连,但更多的则是与细胞体的表膜形成突触。
电突触和化学突触
据神经冲动通过突触的方式的不同,突触可分为电突触和化学突触2种类型。在电