返回

20世纪的科学怪杰鲍林

首页
关灯
护眼
字体:
04 加州理工学院
书架管理 返回目录

一样,X射线具有不同的波长。)但是劳厄倡导的第二个领域结出了更为丰硕的成果。一旦获得了波长一定的光束,研究人员就能利用X光来研究晶体光栅的空间排列:X射线晶体学成为在原子水平研究三维物质结构的首枚探测器。

    现代化学奠基人之一的汉弗莱·戴维在鲍林进入加州理工学院一个世纪前就曾说过:“在人类获取知识的过程中,新工具的运用具有超越一切的重要性。人们在各个时代取得的不同成就,其关键因素并非是他们的自然智力水平,而是他们所掌握的各种手段和人工资源。”X射线晶体学将成为一种威力无穷的人工资源。

    背后的理论相当简单。研究人员面对着三个因素:波长一定的X光,结构一定的晶体光栅和衍射图谱——三者之间存在着一种简单的数学关系。知道了图谱以及另一个因素,就可以推导出第三个因素。最初的许多数学和实践技巧是由一对英国父子搭档,亨利·布拉格和劳伦斯·布拉格①开发的。他们在剑桥与曼彻斯特的实验室成为世界上进行X射线晶体学研究最著名的中心。

    ①亨利·布拉格(HenryBragg,1862—1942),英国物理学家,现代团体物理学创始者之一。其子劳伦斯·布拉格(LawrenceBragg,1890—1971)也是物理学家。父子俩一起用X线衍射仪确定晶体结构,共获1915年诺贝尔物理学奖。

    理论并不复杂,但在实践中,由于衍射图谱相当复杂,因此把晶体结构拼凑起来的过程相当耗费时间和精力。早期的仪器是自制的,质量很不稳定。晶体通常要非常大,需要经过精心的提炼,按一定角度切割,并通过精确的放置才能获得满意的衍射图谱。如果成功地获得了劳厄相片,还要一丝不苟地测量各点的位置和分布。然后才是数学计算。即使是简单的晶体,在没有计算机的时代,对每一个晶体结构的计算都需要花费几个月的时间。如果晶体过于复杂,基本晶体结构单位晶胞中包含的原子数目超过十个,那么X光的衍射图谱将异常复杂,难以破解。整个过程有点像用自制的猎枪射击一块装饰用的熟铁,然后通过分析跳弹的轨迹来推测熟铁的形状。

    出于这些原因,研究对象只能局限于很简单的晶体。然而,对这些简单晶体的研究得出了令人惊讶的成果。研究人员第一次可以通过工具了解晶体中单个原子的排列,精确测量原子间的距离和角度。布拉格父子解决的第一个晶体结构是岩盐,结果出人意料。整个晶体形成了一个巨大的栅格,每个销离子被六个等距离的氯离子包围,每个氯离子被六个等距离的钠离子包围。没有单独的氯化钠“分子”。这一发现震惊了理论化学界,立即引发了人们对盐在溶液中行为的新思索。布拉格实验室早期的另一个成功是发现了钻石的结构,验证了早先化学家的理论,它纯粹是由碳原子组成的四面体。布拉格父子接着又解决了其他几个晶体的结构(他们在劳厄之后一年分享了诺贝尔奖)。

    诺伊斯深信X射线晶体学将会有更深入的发展。晶体学是由欧洲物理学家发明的,但诺伊斯后来把它带到美国,使它成为化学家的日常工具。在布拉格发表成果之后仅过了三年,诺伊斯已把它称为“当今物理化学界最重要的工具”。1916年,他建议自己一位在德国学习的麻省理工学院研究生拉勒·伯迪克在回国途中到英国布拉格实验室稍作停留,以学习他们的X射线技巧。伯迪克回国后,在麻省理工学院建造了美国第一座X射线光谱仪。之后的1917年,诺伊斯让他在帕萨迪纳建造了第二座改进的光谱仪——伯迪克回忆说:“这是当时最好的一座。”研究成果很快就喷涌而出。当鲍林入校的时候,X射线晶体学已成为加州理工学院最重要的化学研究工具,在化学系最初发表的二十篇论文中就有十五篇以此为论题。

    诺伊斯对这一技术抱有很大的期望。化学研究的是分子的行为。诺伊斯日益相信,分子的行为取决于分子的结构。现在终于有可能“看见”分子的结构了。诺伊斯把鲍林分配到迪金森实验室,正是要指点这位天资聪颖的学生沿着一条他深信的未来化学之路前进。

    鲍林一头扎进了实验室,但不久就陷入困境。诺伊斯建议他首先尝试找出氢化锂的结构,但10月份在经过三个星期的努力之后,鲍林发现荷兰的一个小组已经先于他解决了问题。在接下来的一段时间里,他又尝试了其他几种化合物。首先他在电炉中把化合物融化并逐渐冷却以获得晶体,然后把晶体切割,并在显微镜下对好的切片进行初步分析,以确定其结构是否很简单。结果一无所获。(他尝试的一种化合物是二镉化钠,后来被发现是人类所知的最复杂的无机分子之一,直到35年之后其结构才被鲍林的一个同事解决。)鲍林越来越感到沮丧。

    在经过两个月对十五种不同物质进行了一无所获的试验之后,导师迪金森拯救了他。迪金森把他带进化学品陈列室,从架子上抓起一块辉钼矿矿石——一种由钼和硫组成的带有黑色光泽的矿物。他向鲍林演示了在显微镜载片上放置晶体薄片的新方法,并和他一同进行拍摄劳厄相片的准备工

上一页 目录 下一页