返回

20世纪的科学怪杰鲍林

首页
关灯
护眼
字体:
08 生命科学
书架管理 返回目录

验技能更让他心动。鲍林在1935年春天到纽约拜访了莫斯基,两人一见如故。鲍林直截了当地请莫斯基到加州理工学院工作几年,令莫斯基又喜又惊。他结结巴巴地说,这是一个不坏的主意,但是过于突然,所长西蒙·弗莱克斯纳不会答应的。鲍林说,他觉得所长可能会同意。他找到了所长办公室,说服秘书立即安排他和所长会面。他不仅要求弗莱克斯纳同意放莫斯基,还要求洛克菲勒医学研究所支付一切费用。弗莱克斯纳是洛克菲勒基金理事会成员,从韦弗那里对鲍林早有耳闻。他对这位青年科学家的坦率感到好笑,同时对他将化学技巧运用到生物学上感到十分有趣,最终答应了鲍林的要求。

    莫斯基在夏天刚开始的时候来到了帕萨迪纳,马上开始对蛋清、肌肉和其他蛋白质的变性过程做了一系列的实验。鲍林让莫斯基负责实验室工作,同时彼此探讨变性的化学含义——弄清楚这一过程对蛋白质的结构造成了哪些实际的影响。莫斯基和安森收集的实验数据表明,变性过程可以分为两个层次,这让鲍林产生了浓厚的兴趣。第一个层次由相对较弱的热量和酸引起,往往是可逆的。而第二个层次,由较高的温度,较强烈的化学环境或是与破坏蛋白质的酶发生的反应所引起,通常是不可逆转的。根据这些数据,鲍林很快地用化学键理论作出了自己的解释。两个层次的变性意味着有两种类型的化学键,第一类涉及到相对较弱的化学键,很容易被打破或重建;第二类涉及到较强的化学键,难以打破,也难以重建。鲍林对打破第二类较强的化学键所需的能量进行了测定,数据表明这一类化学键为共价键;这反过来也验证了蛋白质是由氨基酸与共价的肽键结合而成的长链的观点。第二层的变性基本上将蛋白质撕裂成了碎片。

    鲍林对较弱的化学键的研究更富有成果。他很快意识到,打破第一类化学键所需要的能量符合他所知的称为氢键的奇怪的化学键类型。在1935年的时候,鲍林是全美为数不多的理解并认识到氢键重要性的科学家之一。这一理论认为,氢在某种情形下,可以不形成一般的共价键或离子键,为两个原子所共有,在两者之间形成一座桥梁。鲍林认识到这一理论可以运用到他的化学键构想中:一方面,氢原子要靠近一个电负性很强的原子——比如说氧原子,或是氟原子——氢原子的孤电子被吸向这一原子,电荷集中在两个原子之间的区域中,在这一边形成一个小的负电荷。结果,在氢的另一边电子出现的机会较少,形成了一个小的正电荷,这样就与附近带负电的原子或分子形成了静电键——氢键。鲍林早在1928年就撰文讨论过氢键的概念,在1934年自己的共振理论中也融入了这一理论,并在1935年关于冰的摘值的论文中集中运用了这一理论。

    现在莫斯基的变性实验使鲍林进一步确信,氢键是蛋白质结构中一个重要的成分。1935年秋天,他们两人根据鲍林的思路初步提出了一种新理论。他们写道:“我们对一个自然的蛋白质分子(表现出一定的特性)的认识如下。分子包含一个多肽链,在整个分子中连续不断(或者在某些情形下,包含两条或更多的多肽链);这一多肽链被折叠为由氢键键合的唯一的结构。……”换句话说,所有蛋白质都包含氨基酸环,以及可能以阿斯特伯里认为的原始蛋白质角蛋白形式存在的多肽链。强肽键使整个链成为一个整体,但是各部分之间较弱的氢键折叠之后使整个链成为其最终的形状。这最终的形状对蛋白质的功能是至关重要的;分子除非保持这一形状,不然难以完成其功能。稍微受热之后,氢键断裂,整个链条伸长,并像针线盒中松散的纱线那样纠结在一起。然而,只要整个链还是一个整体,在合适的条件下,氢键能够重建,蛋白质也能恢复原先的形状和活性。较强的处理将使链本身断裂,打破肽键,并不可逆转地使蛋白质变性。

    1936年7月,这篇名为“论自然、变性和凝结的蛋白质结构”的论文发表在《国家科学院学报》上,很快就被公认为是本领域中一项重要的进展。鲍林对化学键的认识一举对蛋白质变性和蛋白质活性的纷繁复杂的观察数据提出了一个统一的解释。韦弗大喜过望:尽管鲍林的思想最终被接受尚要假以时日,但是他向解决韦弗的“巨大的蛋白质问题”迈进了一大步。

    然而,当论文在1936年6月1日到达《国家科学院学报》编辑部后的两天,鲍林的生活经历了一场巨变,原因与蛋白质没有丝毫的联系。

    ****

上一页 目录 下一章